
Channel Capture Effect in 802.11: A Study

Joe Di Natale, Sarah J. Andrabi

University of North Carolina, Chapel Hill

ABSTRACT

When multiple wireless devices try to send data through the medium, they attempt to do so

fairly—that is the expected behavior. However, some devices tend to send more data than they

should, or even worse they keep sending their data till they are done and don’t let the other

devices send till then. This behavior is known as the channel capture effect, observed first in

wired networks. In this paper we conduct a set of experiments to observe the channel capture

effect in wireless 802.11. We study the effect of the number of clients, their various

configurations, and distances from an access point, on the observed behavior. We also observe

the short-term unfairness due to the channel capture effect.

I. INTRODUCTION

Channel Capture Effect is the phenomenon where one user of a shared medium "captures" the

medium for a significant time [2]. Other users that try to access the medium during that duration

are denied access. Capture Effect was first observed in wired networks using CSMA/CD in

Ethernet [2]. In CSMA/CD nodes sense whether the medium is free or not, to be able to send

data. Thus when multiple nodes try to send data (capture the medium) at the same time, a

collision occurs. If one of the nodes has already captured the medium, and any other node tries to

send data, a collision occurs and the other nodes back off— waiting a random amount of time

before sensing the medium again. Now once the ‘active’ node has finished sending data, it again

senses the medium, and since the other nodes had backed off, this node again captures the

medium. Now when the other nodes’ back-off time is over, they again sense the medium—they

find the medium busy, and again back-off a random, potentially greater, amount of time, and

again the whole cycle repeats till the ‘active’ node is either done transmitting or loses the

medium to another node. Thus one node continues to win the link, thus introducing short term

unfairness. It is still long-term fair as every station has an opportunity to capture the medium [2].

A significant problem for all adhoc wireless networks is the poor performance displayed by the

transport protocol over a number of different MAC protocols [3], [4]. Critical to the transport

protocol is the performance of the MAC protocol in terms of fairness and delay. One

characteristic of poor MAC performance is this 'channel capture'. In this paper we see if the

capture effect can be observed in wireless 802.11b networks. We try different configurations for

a two client system, a three client system and then try increasing the number of clients to up to

four clients for one access point, a server which serves as the receiver for all the clients and a

sniffer. Our measure of interest is the successive number of data frames sent by a client.

The rest of this paper is organized as follows. Section II describes the testbed for the experiment.

Section III presents the challenges encountered during the project. Section IV investigates the

traces obtained from the sniffer and the server and the clients and presents the analysis. We

present future work in section V and finally the conclusion in section VI.

II. EXPERIMENTAL TESTBED SETUP

For our study, we use one server, multiple clients, a sniffer and a Linksys WRT350N access

point supporting 802.11 n/g/b and running DD-WRT firmware. The server and clients all run

Windows 7 and 8 OS, with wireless hardware support for 802.11b, for which we collect our

results. The server and the clients both run jperf, which is the GUI front-end for iperf. Iperf was

originally developed by NLANR/DAST as a tool for measuring maximum TCP and UDP

bandwidth performance. Iperf allows the tuning of various parameters and UDP characteristics.

Iperf reports bandwidth, delay jitter, datagram loss [5]. Iperf has client and server functionality,

and can measure the throughput between the two ends, either unidirectionally or bi-directionally

[6]. The main advantage of using iperf is that it can used with any type of network, both wired

and wireless, thus allowing flexibility of measurements taken.

In our test beds the server has a wired connection to the access point; this is the only wired

connection in the entire test bed. All the clients and the sniffer use wireless 802.11b. The Sniffer

runs Wireshark and Aircrack-ng, the reason for which will be explained in the next section.

Aircrack-ng is a network software suite consisting of a detector, packet sniffer, WEP and

WPA/WPA-PSK cracker and analysis tool for 802.11 wireless LANS [7]. Both Wireshark and

Aircrack-ng require wireless network interfaces that support monitor mode. Since WinPcap does

not support monitor mode, we use the sniffer on a machine running Ubuntu 12.04, as Linux

supports monitor mode. From the Aircrack-ng suite the tool of interest is the airmon-ng—to

enable monitor mode on wireless interfaces [8]. Pcap is an API for capturing network traffic. For

our analysis and processing of traces, we use the C# wrapper for the WinPcap library called

SharpPcap to extract the measures of interest from the traces collected by Wireshark.

For the collection of traces, we start with a two client scenario, with three different

configurations, in one of which the clients are equidistant from the access point and in the second

one, Client 1 is closer to the Access point than Client 2, and in the third one Client 2 is further

away as shown in Figure 1. We then take the measurements again with three clients, with two

different configuration, in the first one the clients are equidistant from the access point, in a T-

configuration and the other is a line configuration, as can be seen in Figure 2. Finally we take

another set of measurements for a 4 client scenario, as shown in Figure 3, in one of the

configurations the clients are equidistant from the access point, and the other one is a line

configuration. In all of these configurations, the server and the sniffer are placed right next to the

access point. All these traces were collected in the Networks Lab, in the Computer Science

Department at UNC, Chapel Hill. We also collected a set of traces for two clients in an

apartment complex where a lot of other Wireless Access points were present, and hence a lot of

interference while as in the networks lab there were only 4 other wireless networks visible and

thus less interference.

Figure 1. Two Client setups (a) Two Clients, equidistant from the Access Point, (b) Two Clients, in a line

configuration and (c) Two Clients, in a line configuration, with one client further away.

Figure 2. Three Client setups (a) Three Clients, equidistant from the Access Point in a T-configuration,

(b) Three Clients, in a line configuration

III. CHALLENGES FACED

The initial challenge faced was obtaining hardware to perform our experiments since there is no

wireless test bed in the Networks lab. At the beginning of the semester, we had approximately 10

volunteers. Once we were ready to perform our experiments near mid-semester, it became

difficult to coordinate volunteers (many of our volunteers could not part ways with their laptop

due to assignment/work deadlines). We were only ever able to test four clients on the same

network at once.

The second challenge was properly setting up a wireless sniffer. WinPcap (Windows Pcap) does

not support monitor mode which is required to do full 802.11 packet sniffing, but is available in

some other libpcap libraries on other operating systems such as Linux [10]. Once Linux was

running on a laptop which had hardware that supported monitor mode (an old Dell Inspiron

1420), new wireless card firmware and drivers had to be installed [11]. Even with the correct

drivers and firmware, there were still issues including only being able to see beacon and probe

requests. The solution to these issues was installing a suite of tools called Aircrack-ng which

provided tools including its own tracing tools and a tool to enable a monitoring wireless interface

[9]. Leveraging some of the functionality in Aircrack-ng, we were able to verify that the sniffer

was working as intended.

Figure 3. Four Client setups (a) Four Clients, equidistant from the Access Point, in a square configuration with

the AP at the center of the square , (b) Four Clients, in a line configuration

Finding a good experimental space was also a challenge. We had to get approval to use a

wireless hotspot in the Networks Lab to carry out our experiments. We also opted to perform our

experiments on campus as it was easier to coordinate with the volunteers and due to relatively

more space available in the networks lab than the apartment.

Finally, once we got our test bed running and ran our various configurations, it became apparent

that different hardware had different transmit power thus affecting the received signal as seen by

the access point. The reason for the differences is because we had heterogeneous hardware which

was provided by volunteers and we could not configure the systems in a more desirable manner.

We opted not to mitigate the effect of different hardware and left that for future work.

IV. EVALUATION AND ANALYSIS

In this section we first present the traces obtained from the testbed, and then present an analysis

of the results obtained.

For every setup as shown in Figures 1, 2 and 3, the clients and the server run jperf, and the

sniffer uses Wireshark along with Aircrack-ng to collect the traces. We use UDP as the transport

layer protocol, with a bandwidth of 1 MBps and a packet size of 1400 Bytes. Each client

transmits data to the server for 60 seconds and all the clients send at the same time. The report

interval for jperf is set to 1 second i.e. it reports what has been transmitted, at the client side, and

what has been received at the server side. We use the 2.442 GHz channel (Channel 6) for our

wireless 802.11b network. The main reason for using UDP instead of TCP was that we only

needed to observe how a client captures the medium, and no other parameters like QoS, and

other transmission guarantees that TCP provides.

All traces were obtained using Wireshark. We filtered the traces so only the UDP traffic

generated was visible. We then used a custom written C# application backed by the SharpPCap

library (a wrapper around the Pcap and WinPcap libraries) which generated statistics such as

average, minimum, and maximum successive frames sent per client as well as average,

minimum, and maximum signal strength per client. Management, beacon, and probe frames were

excluded because these are considered overhead and the experiment was focused strictly on data

packets. We did not distinguish between re-tries and regular transmits because the client had to

recapture the medium to attempt a retransmit.

Figure 4(a) shows Client 1, transmitting data for the configuration shown in Figure 2(b). Similar

results were obtained on the other two clients. Figure 4 (b) shows the total data and the jitter on

server receiving data from all the three clients. We also took base measurements with all the

clients and the server to make sure that the results that we observed were indeed due to the

change in our parameters and not due to the clients itself.

We obtained the number of successive UDP Frames sent by each client during the duration of the

entire transmissions from all the clients. Figure 5(a) shows the plot obtained for the configuration

obtained in Figure 1(b) and Figure 5(b) shows the plot obtained for the configuration in Figure

1(c).

Figure 4(b)—Server receiving data from three clients, in a line configuration setup. This shows the number of

bytes received and the jitter on the y-axis and the time (in seconds) on the x-axis, obtained from jperf.

Figure 4(a)—Client 1 sending data to the server, in the presence of two other clients, in a line configuration setup.

This shows the number of bytes sent on the y-axis and the time (in seconds) on the x-axis, obtained from jperf.

In both these configurations, there are two clients, but their distances from the access point are

different in the configuration for Figure 1(c). As can be seen from the plots, the client which is

further away from the access point sends a fewer number of successive frames. This is despite

the fact that Client 2 has better hardware and consequently more transmission power than Client

1. In Figure 5(a), it can be seen that both the clients are capturing the medium, thus avoiding any

long term unfairness.

0

1

2

3

4

5

6

7

8

9

10

11

12
S

u
cc

e
ss

iv
e

 U
D

P
 F

ra
m

e
s

T
ra

n
sm

it
te

d

Client 1: 001E642542F4 Client 2: F81EDFD889C8

0

1

2

3

4

5

6

7

8

9

S
u

cc
e

ss
iv

e
 U

D
P

 F
ra

m
e

s
T

ra
n

sm
it

te
d

Client 1: 001E642542F4 Client 2: F81EDFD889C8

Figure 5 (b)—Successive UDP Frames sent by two clients at unequal distances from the access point in a line-

configuration.

Figure 5 (a)—Successive UDP Frames sent by two clients equidistant from the access point configuration.

Figure 6(a) and (b) show the plots for four equidistant clients, in different configurations

pertaining to Figure 3(a) and 3(b). As can be seen, that apart from the number of clients affecting

the behavior of the successive number of frames sent by the clients, the distance also affects it.

As can be seen, the number of average successive frames sent is lesser for the clients further

away from the access point as compared to the clients which are closer. For Figure 6(b), Client 1

is the closest to the access point and the average successive frames sent by it is 1.27, while as

Client 2, which is further than Client 1, sends 1.358 average successive frames. Client 3 sends

1.0489 and client 4 which is the farthest send an average of 1.07 successive frames. As this data

indicates—the first two clients which are closer, send more successive number of frames and the

ones after that send lesser, than the ones that are closer. The fact that Client 2 sends more that

Client 1 is due to the discrepancies in hardware, as Client 2 has a higher transmission power than

Client 1 due to better hardware.

0

2

4

6

8

10

12
S

u
cc

e
ss

iv
e

 U
D

P
 F

ra
m

e
s

T
ra

n
sm

it
te

d

Client 1: 001E642542F4 Client 2: F81EDFD889C8 Client 3: 6036DDEE31B2 Client 4: 083E8E28070D

0

2

4

6

8

10

12

S
u

cc
e

ss
iv

e
 U

D
P

 F
ra

m
e

s

T
ra

n
sm

it
te

d

Client 1: 001E642542F4 Client 2: F81EDFD889C8 Client 3: 6036DDEE31B2 Client 4: 083E8E28070D

Figure 6(a)—Successive UDP Frames transmitted by four clients equidistant from the access point, for a part of the

transmission.

Figure 6(b)--Successive UDP Frames transmitted by four clients at different distances from the access point, in a line

configuration, for a part of the transmission.

Also another thing to note is that as the number of clients increases the number of successive

frames sent also decreases, as can be seen from Figure 5 and 6. As the number of clients

increases, the bursty behavior begins to diminish. Also, as the distance between clients and the

access point increases, the clients further away capture the medium for a lesser successive time,

as compared to the ones closer to the client.

Also it is generally the case that when one client sends more successive frames, then the other

clients sends fewer frames. There is no abrupt change like if client 1 sent 7 successive frames

then the next moment Client 2 will also send around 7 frames. This kind of behavior is not

present, which again emphasizes the fact that even though the channel capture effect is observed,

it is not long term unfair.

V. LIMITATIONS AND FUTURE WORK

For future work, this experiment can be done with homogenous hardware that was not available

to us. It is definitely more convenient to be able to make changes to the specific settings for the

clients to make them work in accordance with the requirements of the study. Ideally, we would

run machines with a Linux distribution and MadWifi drivers so we can control various factors

such as transmit power and ensure all hardware runs consistently.

Another aspect that can be possible future work is redoing the experiment with the different

versions of 802.11. Due to hardware limitations, we only were able to test 802.11b for this

experiment. In the future, we would like to see if the channel capture effect is visible and attempt

to analyze it on 802.11g and n networks.

If we are able to redo the experiment with homogenous hardware, we would also like to find a

bigger, open area to conduct our experiments. Since all our experiments were done in the

Networks Lab, we could only take one trial per configuration because there simply was not

enough room to spread out in the lab. If we are able to conduct the trials in an open area, we can

vary the distances in the various configurations and get a better idea of how distance impacts the

Capture Effect.

We would also like to come up with some way to incorporate management frames into analysis

since they were considered overhead in terms of this experiment. It would be interesting to

observe if the management frames are causing the bursty behavior. Another side effect of the

channel capture effect is channel idle time [2]. Due to time constraints, we did not analyze

potential idle times as a result of the effect. In future work, we would like to define what idle

time is and attempt to measure how much idle time the effect creates, if any.

VI. CONCLUSION

Our experiments led us to conclude that channel capture effect is present but on a much smaller

scale than we were expecting. In 802.11b networks, there is clear short term unfairness between

clients. This unfairness can be attributed to the bursty behavior exhibited as clients capture the

medium. Even though this short term fairness is present, it does not create long term unfairness.

Overall 802.11b seems to be long term fair.

There is also clear indication that the number of clients connected to a single access point has an

impact on the number of successive frames sent from a single client. Our experiments show that

as the number of clients increase, there is a lesser chance for high number of successive frames

being sent. We believe this has to do with how random back off works in 802.11 networks. The

more clients added to the network, there is a better chance that at least one client will select a

smaller back off value. If at least one client selects a smaller back off, then there is actual

competition for the link which can dramatically reduce the channel capture effect.

Our experiments also show that there does appear to be a trend involving distance and signal

strength. From our trials, it appears that if a client has higher signal strength than the rest of the

clients on the network, the client can win the medium repeatedly which allows for it to send

more successive frames. Similarly, the less distance between a client and the access point, the

stronger their signal, therefore the higher chance of that client winning the medium. The results

of our trials cannot confirm that this is always the case, but they appear to suggest that signal

strength (and by proxy distance) plays a major role in the capture effect.

REFERENCES

[1] C. Ware, J. Judge, J. Chicharo, and E. Dutkiewicz. Unfairness and capture behaviour in

802.11 ad hoc networks. IEEE International Conference on Communications, 1:159 –163, 2000

[2] Channel Capture Effect, Wikipedia

[3]M Gerla, K Tang, and R Bagrodia. TCP performance in wireless multihop networks. In 2nd

IEEE Workvhop on Mobile Computing Systems und Applicufions, volume 1, pages 41 -50.

IEEE, 1999.

[4] G Holland and N Vaidya. Analysis of TCP performance over mobile ad-hoc networks. In

Mobicom 99, Seatle, 1999.

[5] iperf, Google Code, https://code.google.com/p/iperf/

[6] Iperf, Wikipedia, https://en.wikipedia.org/wiki/Iperf

[7] Aircrack-ng, http://en.wikipedia.org/wiki/Aircrack-ng

[8] Documentation Aircrack-ng, http://www.aircrack-ng.org/documentation.html

[9] Aircrack-ng, Wikipedia, http://www.aircrack-ng.org/doku.php

[10] WLAN (IEEE 802.11) capture Setup, http://wiki.wireshark.org/CaptureSetup/WLAN

[11] b43 and b43legacy, http://wireless.kernel.org/en/users/Drivers/b43

