
1

GPU Accelerated Ray-Tracing on NVIDIA Hardware:
Using object-based KD-Trees to accelerate image generation

Giuseppe DiNatale1

Schuyler Kylstra1

1University of North Carolina at Chapel Hill, Computer Science. Chapel Hill, NC, 27599

This paper presents a summary of our work in the development of a GPU enabled ray-tracer written in CUDA for the fall 2014
UNC Comp 770 class. We will cover our development of the GPU pipeline as well as our normalized representation of object based
KD trees. We were interested in this topic because generating film quality frame rates using a ray-tracer is an open problem in
computer graphics research. Furthermore, we were interested in learning the basics of CUDA GPU programming. Specifically, we
wanted to address the problem “What constraints need to be included to develop a high speed graphics engine via ray-tracing?” To
address this problem, we developed a framework for the scene environment where there is a upper bound on the number of objects
in the scene and each unique-object is described via a local normalized KD-tree. We managed to implement a CUDA ray-tracer
with an interactive geometry that renders close to one frame every few seconds.

Index Terms—Graphics, GPU, CUDA, Ray-Tracing, KD-tree, NVIDIA

I. INTRODUCTION

AS it stands right now, there are no gaming systems
that use a ray-tracer as the bedrock of their graphics

engine. All of the available systems instead use a rasterizer
to visualize the scene along with a handful of useful hacks to
simulate real world lighting effects. Shadows, reflections, and
more are all tacked on to image generation as a side effect.
Because of this, the quality of a rasterized image is limited
and of lower quality than a ray-traced image. However, they
greatly outperform modern ray-tracers in the time it takes to
generate a single image. This is because each object in an
scene is constrained to occupy a small piece of the screen
where as a ray-tracer needs to evaluate the every pixel against
potentially every object. To combat this data structures are
employed that contain reflect the spatial layout of the scene.
These structures are deployed to minimize the number of
triangles that have to be investigated. The canonical example
of such a data structure is called a kd-tree. A kd-tree breaks
up all of space into disjoint regions. These volumes are then
grouped into larger regions to form a tree structure. Each leaf
node has a collection of triangles that are at least partially
contained in its interior. By utilizing these data structures a
ray-tracer dramatically improves its performance.
However, problems arise when you are interested in dynamic
scenes. If there is any change in the scene there is a good
chance that the KD tree is no longer correct. Rapidly updating
the KD-tree to maintain utility is a major open problem in
graphics research today. In this paper we will not try to
tackle this problem. Instead we will try to avoid it entirely.
Tree upkeep is especially important when there are a large
number of spatially independent objects. This means there
is no overall structure to the scene and no assumptions
about location can be used to construct the KD-tree. The
high number of independent objects makes it impossible to
consider all the objects in parallel. In this paper we focus on
the scenes where this is not the case - scenes with a limited

number of independent objects.

Organization: The rest of this paper is organized into the
following sections:

1) Related Work - We discuss the work that informed our
project and the cutting edge of ray-tracing.

2) Methods - This section contains our main contributions
and will be broken down further.

a) Scene Construction - We describe our heuristics for
the organization of scene data.

b) Normalized KD-Tree - We explain the features and
implementation of our object centric data structure.

c) CUDA Pipeline - We discuss how we take our formu-
lation and implement it on a NVIDIA GPU.

3) Results - We report on what we implement, the quality
of our images, and the frame rates we achieve.

4) Conclusion and Future Work - We explain the
implications of our work and propose avenues for
future development.

II. RELATED WORK

Ray-tracing has a long history in computer graphics, dating
back to the 1980’s at the latest [6]–[9]. These renderers were
known to produce high quality images but were limited by
the capabilities of the time period. As scenes became more
complicated, researchers began developing data structures to
space and minimize the number of ray-object intersection
tests that were needed. This led to the development of a
number of space partitioning techniques. The canonical
example is the kd-tree which is a 3D binary search tree over a
closed volume. KD-trees and similar data structures produced
far more efficient rendering algorithms but are still too slow
for many real-time applications. Developing methods further



2

accelerate image rendering is an ongoing field of study. In
recent years, ray-tracer performance has improved with the
utilization of GPU technology to enable massively parallel
computation [1], [4], [5], [13], [14].
One of the methods utilized to accelerate tree traversal on a
GPU is back-tracking [5]. Back-tracking is a simple algorithm
that has a significant impact on the number of nodes visited
during tree traversal. Each time we reach a leaf node of a
tree and don’t produce an intersection we return to the most
recent ancestor of that leaf that we have not fully explored.
In our project we implement a compressed version of the
algorithm covered in the 2006 Foley paper. In our case we
limit the calculations to a single GPU kernal. We believe this
choice ended up being detrimental to the efficiency of our
renderer.

The main limitation of modern ray tracers is that the
acceleration structures do not handle dynamic scenes
effectively. In fact, a standard kd-tree of low granularity
used for a dynamic scene would need to be reconstructed
for almost all movements. This leads to the development
of efficient and parallelized methods for tree reconstruction
[2], [3], [10]–[12], [15]. However, we are going to try to
completely avoid this necessity by utilizing object-hierarchies.
This technique dates back to the 80’s as a way to limit the
number of ray-triangle intersection calculations required.
It achieves this by performing intersection calculations on
the space occupied by and object before investigating the
triangles that compose those object [9]. If a ray does not pass
through the spcae occupied by an object then there is no way
the ray interacts with that object.

III. METHODS

In this section we explain our contributions. The following
are the definitions for the terminology we will be using in
this paper:

• Mesh - The triangular representation of an object.

• Ray - The mathematical representation of vision, light,
and shadow in a 3D scene.

• Object - A static geometry constructed from a mesh.
Represented by its own normalized kd-tree.

• Normalized KD-Tree - A data structure that used to
describe the spatial layout of a mesh and to efficiently
evaluate a ray-object intersection.

• Character - A collection of pairwise spatially dependent
objects. The set of possible locations for two objects
in a character are representable in a finite volume. Two
different characters are spatially independent.

• Atomic Character - A character composed form a single
object.

• Scene - The total set of characters that are represented
at any given time.

For this paper a building or a landscape could be considered
a character. This information could conceivably be used to
accelerate collision detection but that is not the focus of this
paper.

A. Scene Construction

We wanted to enable the construction of dynamic scenes but
were trying to avoid the costly process of tree reconstruction.
As a scene evolves, the triangular meshes move relative to
each other. In the worst case, every single triangle could move
independently. An example of this chaotic geometry would
be the shattering of a dish or glass. Trying to implement this
shattering as a feature would require a tree reconstruction as
the scene geometry at time t0 would be completely different
from the geometry at time tf . However, when you look at
the state of the art in game engine’s this feature is never - or
at the most rarely - included. In fact, much of the geometry
rendered in modern computer games adheres to a high degree
of interdependence.
Consider the game Halo as an example. In that game there
are incredibly sophisticated environments that the player can
explore. However, much of the structure of the environment
is locked in place - the mountains do not shatter as you
run through them. The number of completely independent
objects can be relatively low for a very detailed scene.
Using this intuition, we decided to describe the geometry of
the scene based on the independent object. Each character
relative geometry of a collection of objects and each object
is described with its own kd-tree. One requirement is that
the triangle mesh for a given object is static allowing us to
pre-compute every kd-tree.

B. Normalized KD-Tree

When we treat each object as an independent geometry
we can scale each mesh independently within our scene.
Furthermore, it becomes possible to present a scene with two
separate instance of the same object but at vastly different
scales. This distinction between scene geometry and model
geometry implies that the absolute positions of points in a
model are not important but rather the locations of the points
relative to the rest of the model. We reject the notion of
absolute space!

To take advantage of this freedom, every object’s bounding
box is the unit cube. Internally, this causes the object
geometry to be scaled but by recording relative scales for
x̂, ŷ, and ẑ the scene view of the object is unchanged.
Containing the object geometry in the unit-cube allows us to:

1) Represent an object’s geometry using fixed point encod-
ing.

2) Scale objects independently in the scene space.



3

3) Convert from scene space to object space very easily.

The advantage of using fixed point numbers in our objects is
that the math is computationally cheaper so we can conceiv-
ably achieve better frame rates than by using floating point
arithmetic.

Each object in the scene is now represented by a point and
three orthogonal vectors of various lengths. These represent
the axes of a given object’s frame of reference. The bounding
box described by these vectors is the scene space bounding
box of the object and is not necessarily a unit-cube.

Each kd-tree is contained in a bounding volume. Ray
bounding volume intersection can be evaluated using the
Möller-Trumbore algorithm with a minor amendment. Change
α+ β ≤ 1 to α+ β ≤ 2 and both are less than or equal to 1.

C. CUDA Pipeline

In order to implement our ray tracer, we had to break
down the process of ray tracing into stages which could
be implemented as individual CUDA kernels. In order to
remove the overhead of memory allocations, all buffers for
various data structures (i.e. rays, scene objects, lights, etc.)
are preallocated on the device. The only data transferred from
device to host is the final frame buffer at the end of the
pipeline. The stages of the pipeline are listed and described in
order below. Below, let W the width and H be the height in
pixels of our image. Let L denote the number of lights in our
scene and let N denote the number of objects in our scene.

Ray Generation
As the first step, a ray must be generated for each pixel

of the viewing plane. The camera is a perspective camera,
therefore each ray generated will start from the origin of the
camera and will pass though the center of a pixel. When
calling the ray generation kernel, we will have CUDA partition
our data into W blocks with each block having H threads.
The block index and thread index will denote the x and y
locations of our pixels respectively. The output of this kernel
is a 1 dimensional array which is WxH in length that will
contain all rays generated.

Object Intersection
Once rays are generated per pixel, object intersection must

be performed. Each ray must be tested with every object in
the scene to determine if an intersection occurs. Intersection
detection is accomplished by traversing a pre-generated kd tree
for each unique scene object. We implemented a stack based
kd traversal algorithm since CUDA does not handle recursion
very well. The object intersection kernel expects a W x H
block array with N threads per block and will perform an
intersection test for every ray object combination. The output
of this kernel is a W x H x N array of intersection data. The
intersection data contains the time value of the intersection,
a pointer to the object with which the ray collided, the index
of the triangle of the mesh that the ray intersected, and a
point representing the point on the surface of the intersecting
triangle.

Intersection Reduction
The next step of the process is to determine the closest

intersection, if there was one, for each ray. Our intersection
reduction algorithm is a basic stride based reduction. The
intersection reduction kernel will accept the full intersection
data from the previous kernel and will reduce the set of
collisions for each object by finding the minimum time value
for each intersection of a particular ray. The kernel expects a
W x H block grid which will have N number of threads
to perform the reduction for each block. The output is an
array which is WxH in length which contains the data for
the closest intersection.

Ambient Processing
Now that the closest intersection has been determined, the

ambient intensity per pixel can be determined. Using the
object pointer contained within our intersection data, we can
determine the surface properties of the object and assign each
pixel the ambient intensity of the surface. Also, the calculation
of the surface point occurs here since that will be useful for
the following steps of the pipeline. The inputs for this stage of
the pipeline are the rays and the reduced intersection data. The
output of the stage is the intensity buffer with ambient color
set for the pixels with rays that intersected with an object. The
intensity buffer is W x H in size. The kernel is expecting W
blocks with H threads per block with each block thread pair
performing the ambient processing for a single ray.

Shadow Processing
Using the surface points calculated from the prior stage, we

can now determine if the surface points are in shadow. This
will require rays to be shot from the surface point to every
light in the scene. If the ”light rays” intersect with an object
before intersecting with the light source, the surface point is
in shadow. The shadow processing kernel expects a 2D, W
x H block grid with LxN threads per block. Each thread in
the block is responsible for calculating the light ray between
the surface point and its assigned light and determining the
ray intersects with its assigned object. Intersection is again
determined by using our stack based kd tree traversal. The
shadow processing kernel expects a 2D, W x H , block array
with LxN threads for each block. The kernel produces a W x
H x L array of booleans which indicates if the light ray was
obstructed for the given light and camera ray.

Color Processing
Once we determine which lights are obstructed for each

surface point, we can add each unobstructed light’s contri-
bution to the color of the pixel in the viewing plane. This
portion of the pipeline is another stride reduction to sum
all light contributions. This is where the lighting model is
implemented. For our ray tracer, we simply implemented the
diffuse portion of the Phong Shading model. This kernel
expects a 2D, W x H , block gride with L threads per block.
The output of this stage is the total intensity per pixel.

Gamma Correction
Finally, gamma correction must be performed. This kernel

simply applies the basic gamma correction with a gamma value
of 2.2. The kernel expects a 2D, W x H , block grid with one
thread per block. The output of the kernel is simply the final
frame buffer to be used to display on the monitor.



4

IV. RESULTS

Given the time constraints, we were unable to implement
the object based scene structure. However, we did produce
a working CUDA ray-tracer using a stack based traversal
and backtracking. We only generated one scene base on a
precomputed KD-tree of the Sibenik Cathedral benchmark.
The cathedral is the only object in our scene and is static.
Additionally, there is a single light source in the scene located
at the origin. These are not necessary constraints imposed in
our generator but rather a product of time to include various
features in our scene. It would be simple to add additional
lights of various colors. Our scene is dynamic in that the
location of the camera can change and is controllable by a
user. Images generated by our system are displayed below:

As you can see, we still have some bugs but it is generally
functioning. Overall, we can generate a new frame every 2 -
3 seconds. However, we only tested on a machine that had a
single GTX 780 which was pushing both the display ouput
and performing CUDA operations. This means our program
was competing with screen image generation and every other
image producing process. Problems porting our code meant

we only were able to test on a single machine but we would
expect a dramatic improvement in render time when we are
not competing with other processes.

Overall, our code has the capability to represent i) multiple
objects, ii) multiple light sources, iii) ambient coloring, iv) dif-
fuse coloring, v) camera motion, and vi) gamma correction.

V. CONCLUSION AND FUTURE WORK

When we chose to do this project we did not appreciate
the scope of the problem we were tackling. Our goals
were to implement a ray tracer with very advanced scene
characteristics in a framework that neither of us had worked
in before. The devils of parallel programming quickly
appeared and limited our implementation. We failed to render
in real time but achieved much higher frame-rates than when
rendering on the CPU alone.

In the future we would change multiple aspects about
our implementation. First, it is important that we simplify
our kernal functions. After a review of the literature, the
papers we examined spent much more energy reducing the
size of their individual kernals. For instance, the 2005 Foley
paper from Stanford uses as many kernals to calculate ray
intersection as we use in our entire pipeline.

Additionally, we were never able to explore the possibilities
of incorporating normalized kd-trees. Any benefits from this
approach remain unknown at this time.

REFERENCES

[1] Carr, Nathan A., et al. ”Fast GPU ray tracing of dynamic meshes using
geometry images.” Proceedings of Graphics Interface 2006. Canadian
Information Processing Society, 2006. APA

[2] Havran, Vlastimil, Robert Herzog, and H-P. Seidel. ”On the fast construc-
tion of spatial hierarchies for ray tracing.” Interactive Ray Tracing 2006,
IEEE Symposium on. IEEE, 2006.

[3] Hunt, Warren, William R. Mark, and Gordon Stoll. ”Fast kd-tree construc-
tion with an adaptive error-bounded heuristic.” Interactive Ray Tracing
2006, IEEE Symposium on. IEEE, 2006.

[4] Huss, Niklas. ”Real Time Ray Tracing.” (2004).
[5] Foley, Tim, and Jeremy Sugerman. ”KD-tree acceleration structures for a

GPU raytracer.” Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. ACM, 2005.

[6] Fujimoto, Akira, Takayuki Tanaka, and Kansei Iwata. ”Arts: Accelerated
ray-tracing system.” Computer Graphics and Applications, IEEE 6.4
(1986): 16-26.

[7] Glassner, Andrew S., ed. An introduction to ray tracing. Morgan Kauf-
mann, 1989.

[8] Glassner, Andrew S. ”Space subdivision for fast ray tracing.” Tutorial:
computer graphics; image synthesis. Computer Science Press, Inc., 1988.

[9] Goldsmith, Jeffrey, and John Salmon. ”Automatic creation of object
hierarchies for ray tracing.” Computer Graphics and Applications, IEEE
7.5 (1987): 14-20.

[10] Lauterbach, Christian, et al. ”Fast BVH construction on GPUs.” Com-
puter Graphics Forum. Vol. 28. No. 2. Blackwell Publishing Ltd, 2009.

[11] Nah, JaeHo, and Dinesh Manocha. ”SATO: Surface Area Traversal
Order for Shadow Ray Tracing.” Computer Graphics Forum. 2014.

[12] Popov, Stefan, et al. ”Experiences with streaming construction of SAH
KD-trees.” Interactive Ray Tracing 2006, IEEE Symposium on. IEEE,
2006.

[13] Popov, Stefan, et al. ”Stackless KDTree Traversal for High Performance
GPU Ray Tracing.” Computer Graphics Forum. Vol. 26. No. 3. Blackwell
Publishing Ltd, 2007.



5

[14] Singh, Jag Mohan, and P. J. Narayanan. ”Real-time ray tracing of
implicit surfaces on the GPU.” Visualization and Computer Graphics,
IEEE Transactions on 16.2 (2010): 261-272.

[15] Wald, Ingo. ”On fast construction of SAH-based bounding volume
hierarchies.” Interactive Ray Tracing, 2007. RT’07. IEEE Symposium on.
IEEE, 2007.


