
1

Modification and Evaluation of Linux I/O
Schedulers

Asad Naweed, Joe Di Natale, and Sarah J Andrabi
University of North Carolina at Chapel Hill

Abstract—In this paper we present three different
Linux I/O schedulers—Average Queue Length, Read-
Write FIFO and Scheduler Selector. We then present
an performance analysis of these three schedulers,
the Linux default CFQ scheduler and Random I/O
scheduler based on different workloads and an anal-
ysis of the performance when multiple processes are
running simultaneously.

I. INTRODUCTION

Disk operations —specifically disk seeks —are
one of the slowest operations on modern computers.
Therefore, when the kernel gets an I/O request, it
does not directly issue the block requests. Instead,
it attempts to maximize performance for different
kinds of workloads by using different scheduling
mechanisms. The Linux 2.6.32 kernel comes with
four I/O schedulers: no-op, deadline, anticipatory,
and completely fair queuing (CFQ), with CFQ
being the default. The kernel provides the option
of switching the I/O scheduler either at boot time
or run time depending on a priori knowledge of
the workload. The I/O scheduler can be modified
or extended, and the new scheduler can be added
to the kernel as a loadable module. Alternatively,
the kernel can be recompiled based on the modifi-
cations made to the scheduler.

In this paper, we present three new I/O sched-
ulers that build on various concepts of existing I/O
schedulers and borrow some ideas from the process
schedulers. These schedulers include a Read-Write
FIFO scheduler and an Average Queue Length
(AQL) based I/O scheduler. Along with these three,
we implement a random scheduler, which as the
name implies randomly chooses requests from a
list and schedules them. A scheduler selector is also

implemented, which chooses from one of the sched-
ulers present in the kernel during run time based
on I/O performance. We report the performance of
all five schedulers on a set of workloads, which
represent a range of I/O behavior. We use various
mixed workloads with several different types of
I/O requests concurrently accessing the I/O sub-
system. In such a scenario, it is expected that the
I/O scheduler will not deprive any process of the
required I/O resources. We analyze the throughput
of the I/O schedulers and observe the behavior of
the schedulers with respect to the cache size.

We ask the following questions for our analysis:
What is the impact of extended schedulers on the
execution time of some realistic benchmarks? Do
the scheduling policies provide similar performance
under different workloads, or is the performance
different? If it is different, then how different? How
does random scheduling perform as compared to
the other schedulers? Is it better or worse? Do
our schedulers provide any additional performance
benefits? How is the performance of the schedulers
affected by varying the cache size?

The paper is organized as follows. Section II
briefly describes the working of the Linux kernel
2.6.32. In section III, we give an overview of the
three schedulers we implemented. In section IV, we
describe the working of the scheduler selector. In
section V, we present our experimental evaluation
criteria and test cases using benchmarks. Observa-
tions are presented in section VI, and the conclusion
is presented in section VIII. Section VII describes
the contribution of each of the team member.



II. DESCRIPTION OF LINUX I/O SCHEDULERS

This section briefly describes three of the four
schedulers provided by Linux 2.6.32, the no-op
scheduler, deadline scheduler and the Completely
Fair Queuing (CFQ) Scheduler. These schedulers
are described here because our implementations of
the Linux I/O Schedulers take ideas from these two
schedulers.

A. CFQ Scheduler

The goal of CFQ is to equally distribute I/O
bandwidth equally among processes performing I/O
operations[1]. The CFQ scheduler utilizes a hash on
the process identifier (PID) of the process wanting
to queue an I/O request to place it in the appro-
priate queue. In Linux kernel version 2.6.32, the
CFQ implementation utilizes 64 separate queues.
During dispatch, requests are pulled from the head
of each non-empty queue. The requests selected
for dispatch are then sorted and merged into the
dispatch queue for the device driver to handle.[3]

B. Deadline Scheduler

The goal of the deadline scheduler is to guarantee
a maximum latency per request.[4] Read requests
have lower deadlines because processes usually
block waiting for read I/O to finish. The scheduler
maintains a set of queues for both read and write
requests. Both sets of queues consists of a FIFO
queue based on deadline and a queue sorted in
increasing Logical Block Address (LBA) order. At
the end of a dispatch, the scheduler determines
if write requests have been starved and if a new
batch of reads or writes should be dispatched.[4]
At the start of each dispatch, the FIFO queue is
checked to determine if any deadlines are passed.
If no deadlines have passed, then the scheduler pulls
from the appropriate LBA sorted queue.[4]

C. No-op Scheduler

Noop scheduling is a simple FIFO based, low
overhead scheduler.[1] Limited merging takes place
and is done with a last hit cache.[2] This scheduler
is normally utilized when the block device is fast
(i.e. an solid state drive) and the system is CPU
bound.[2]

III. DESCRIPTION OF NEW I/O SCHEDULERS

This section describes the I/O schedulers that
we implemented, the Average Queue Length I/O
Scheduler, the Read Write FIFO I/O Scheduler and
the random I/O Scheduler. The schedulers described
here built up on the concepts of the current Linux
I/O schedulers as described in the previous section.

A. Average Queue Length I/O Scheduler

The primary goal of the AQL I/O scheduler is
to dynamically scale the number of I/O requests
satisfied based on the amount of I/O each process is
requesting. When all processes have approximately
equivalent need for I/O, then AQL acts similar to
CFQ by attempting to give each process equivalent
I/O bandwidth. When processes have differing I/O
requirements, AQL will attempt to dispatch more
requests for the processes that require more I/O.
Processes will never starve because AQL will al-
ways dispatch at least one request from a busy
queue. If the number of processes is high, AQL
will behave similarly to CFQ. Requests are merged
into the dispatch queue in sorted order to maximize
block device performance.

AQL maintains a set of 64 queues and I/O
requests are added to a queue based on the PID of
the requesting process. The scheduler maintains a
running average of the queue length for each queue
which allows it to gauge the amount of demand
for a set of processes. The average length for each
queue is updated each time a dispatch occurs. If a
queue is idle, its running average will be halved.
If the queue is idle for 10 dispatch cycles, AQL
assumes the process making I/O requests was either
terminated or won’t utilize I/O for some time in the
future. In this case, the queue’s running average is
reset to 0. The number of requests dispatched from
a queue is determined by the average length of the
queue divided by the sum of the average lengths of
all busy queues.

B. Read Write FIFO I/O Scheduler

The read-write FIFO scheduler maintains two
separate lists, one for read requests and one for
write requests, which are stored in a FIFO fashion

2



in the list. During the enqueue phase the requests
are stored in one of the lists based on whether it is
a read or a write request. Scheduling a request to a
disk drive involves inserting it into a dispatch list,
which is ordered by block number and deleting it
from the list, for example the read fifo list. A set of
contiguous requests is moved to the dispatch list.
Requests are selected by the scheduler using the
algorithm presented below. The algorithm treats 5
contiguous requests at a time.

Step 1: If there are read as well as write requests
in the fifo lists, then select 60% reads and 40%
writes and dispatch them and exit

Step 2: If there are only read requests and no
write requests, then all the requests dispatched are
read requests and exit

Step 3: If there are only write requests and no
read requests, then dispatch all writes requests and
exit

Step 4: If there are less than 60% read requests,
then dispatch all the reads and the remaining
dispatches will be write requests to ensure at least
5 contiguous requests are dispatched.

When the scheduler dispatches requests it gives
preference to read requests over write requests. This
policy prevents write starvation because no matter
what a write request, if present, will always be
dispatched. However in that case the write perfor-
mance will be poorer but writes will not be starved.

C. Random I/O Scheduler

The Random I/O scheduler, as the name implies
selects schedules I/O requests randomly. The
scheduler maintains one list of I/O requests.
During the enqueue phase each request is added to
the tail of the list. Scheduling the request involves
randomly selecting a request from the list and
inserting it into a dispatch listthe request is added
to the tail of the dispatch list. The dispatch queue
in this case is not sorted by block number. Once
the request has been added to the dispatch list it is

deleted from the Random I/O list.

The Random I/O scheduler can starve certain
requests, if it never chooses those request from the
list. Since the way that random chooses requests
from the list is random, there is no way to ensure
that it chooses all the requests currently in the list
before choosing a newly added request. This has
an impact on the performance of the scheduler.
A study of its performance under a range of
workloads is presented in Section V.

IV. I/O SCHEDULER SELECTOR

The IO scheduler selector does not implement its
own scheduling algorithm. Rather, it discovers and
utilizes other elevators already registered with the
kernel and then switches between those schedulers
based on a heuristic function that estimates through-
put. We assume that each registered elevator has its
own strengths and weaknesses, i.e. a different level
of performance for different kinds of workloads.
As the workload changes, so should the schedul-
ing algorithm. At the high level, the procedure
is relatively straightforward. We start with a ran-
domly chosen elevator, and then begin monitoring
throughput. If the throughput performance drops
below a certain threshold, we switch to another
random elevator. In our experiments, we found that
our switching algorithm quickly converged to the
most optimal elevator for the given workload at any
point in time. The selector also adapts to changing
workloads, and quickly selects the most optimal
scheduler. Since the choice of elevator at each
switch is completely random, the selector takes
O(n) time to converge in the worst case, where n
is the number of registered elevators in the kernel.
However, the expected and observed time was not
always the worst case.

There were various engineering challenges asso-
ciated with this implementation. According to the
Linux elevator API, each scheduling algorithm has
to have its own elevator type and elevator queue.
Also, the kernel does not provide a mechanism
for the discovery of various elevator types and
obtaining handles to the elevator op functions of

3



those elevators. We modified the kernel source
code, exposing certain static functions, including
elevator find and elevator get, to obtain this in-
formation, and also help in draining queues and
perform elevator switching on-the-fly, without cre-
ating a new elevator queue. The IO selector was
registered as an elevator inside the kernel, and
we could not use traditional methods of switching
elevators, because that would mean un-registering
the selector. The actual switching of the different
elevators was done by means of a new kernel thread
inside the selector, which continuously monitored
throughput, and switched the elevators when nec-
essary. Care had to be taken while draining queue
prior to calling new function handlers, and also to
ensure that incoming requests to the request queue
did not disrupt the switching process. This was done
by placing the queue on ”bypass”, which indicated
to the underlying IO scheduler inside the Linux
kernel to stop using the elevator and perform a
simple FIFO procedure on the request queue to
dispatch requests.

The scheduler selector chooses from Deadline,
Anticipatory, no-op and AQL.

V. EXPERIMENTAL EVALUATION

This section presents the benchmark setup, the
experimental platform as well as the different work-
loads used for the performance analysis of the
Linux CFQ scheduler, the AQL I/O scheduler, the
Read/Write FIFO scheduler, Random I/O scheduler
and the Scheduler Selector. The results provided by
the scheduler selector are a mix of the results of
different schedulers as already explained in Section
IV. The workloads are described in section V.D. For
our analysis we use IOzone to perform benchmark-
ing of all I/O schedulers.

A. Benchmark Setup

The IOzone benchmark tool [5] is a workload
generator for a variety of file operations. IOzone
provides a variety of file system performance
coverage thus giving a broader idea of what the
performance of the system will be like for different
scenarios.

IOzone tests performance by using file operations
to access files of different sizes and accessing
different sized chunks of the file at a time. It
calls these transfer size chunks record sizes. IOzone
provides an automatic mode that produces output
that covers all tested file operations for record sizes
of 4k to 16M for file sizes from 64k to 512M. File
creation time is not counted in the benchmark and
we do not include time taken to close the file in
the measurements. IOzone also allows us to report
the CPU utilization for each of the five schedulers
for each of the file operations that were run using
automatic mode. Another set of tests allows to
analyze the throughput for a certain number of
processes/threads running on the machine. The test
is configured to run 5 processes each of which
accesses a 100MB file in 4KB records. Each test
runs for a number of different file operations. The
throughput tests are executed for each of the five
schedulers on our platform. The average, minimum
and maximum throughput obtained for each of the
file operations is reported.

B. Experimental Platform

We conducted the following experiments on a
single core 2.4 GHz Intel Xeon processor system,
with 1GB main memory and 512MB L2 cache,
running CentOS (Linux 2.6.32) and bus speed of
100MHz. Only a single processor is used in this
study. For each experiment we reboot the machine
to remove any cache effects.

C. Metrics

For the benchmark experiments the metric aggre-
gate disk throughput (in KB/s) is used to demon-
strate the performance of the schedulers. With no
other processes executing in the system (except
daemons), I/O intensive application execution time
is inversely proportional to disk throughput[6].
In such situations, the scheduler with the largest
throughput (smallest execution time) is the best
scheduler for that file operation. The I/O schedulers
that we test viz. CFQ, RWFIFO and random do not
favor any particular process. The Average Queue
Length I/O scheduler favors processes which have

4



TABLE I
I/O SCHEDULER THROUGHPUT FOR WRITES AND MIXED WORKLOAD WITH 5 PROCESSES

Scheduler Initial write Rewrite Mixed workload Random write
CFQ 89800.77 62254.98 596536.20 7343.94

Random 52507.09 26557.54 238565.50 6008.48
Average Queue 75470.37 67863.41 595586.67 7750.88

RWFIFO 85936.97 61289.21 576464.18 7333.17
Scheduler Selector 57647.29 52716.48 571131.52 6032.48

TABLE II
I/O SCHEDULER THROUGHPUT FOR READ OPERATIONS WITH 5 PROCESSES

Scheduler Read Re-read Stride read Random read
CFQ 1189923.14 1199803.94 827698.06 794624.25

Random 505763.85 508004.99 356562.33 324940.65
Average Queue 1077215.14 1195787.41 757119.36 789136.14

RWFIFO 1186422.03 1193834.84 824482.86 793497.72
Scheduler Selector 1126011.22 1138910.12 791094.59 766592.45

more I/O requests maintaining a running average
of the number of I/O requests per process. None
of these schedulers however, introduces any form
of delay to favor one application over another and
thus has no effect on the execution times of the
applications run during the benchmark test. RW-
FIFO gives preference to reads over writes and thus
the performance comparison for these two types of
operations, along with one for a mixed load is an
important metric for this scheduler. An interesting
thing to note will be the effect on performance due
to the scheduler switching done on the fly by the
scheduler selector.

D. Workload Descriptions

The following represent all the various workloads
used for the two experiments using IOzone: Write:
This test measures the performance of writing a
new file. When a new file is written not only does
the data need to be stored but also the overhead
information for keeping track of where the data
is located on the storage media—metadata.It is
normal for the initial write performance to be
lower than the performance of rewriting a file due
to this overhead information [5].
Re-write: This test measures the performance of
writing a file that already exists. When a file is

written that already exists the work required is less
as the metadata already exists [5].
Read: This test measures the performance of
reading an existing file.
Re-Read: This test measures the performance of
reading a file that was recently read. Performance
in this case tends to be higher as the OS caches
the data recently accessed.
Random Read: This test measures the performance
of reading a file with accesses being made to
random locations within the file.
Random Write: This test measures the
performance of writing a file with accesses
being made to random locations within the file.
Random Mix: This test measures the performance
of reading and writing a file with accesses being
made to random locations within the file.
The performance of a system under random reads,
writes and mix type of activities can be impacted
by several factors such as: Size of operating
systems cache, number of disks, seek latencies,
and others [5]
Stride Read: This test measures the performance
of reading a file with a stride access behavior.

5



Fig. 1. Throughput measurements for Sequentially Reading Various File sizes in Block sizes of 64k and 128k

VI. ANALYSIS AND OBSERVATIONS

This section presents a comparative performance
analysis using the workloads described in Section
V for the Linux CFQ scheduler, the AQL I/O
scheduler, the Read/Write FIFO scheduler, Random
I/O scheduler as well as the performance provided
by the scheduler selector. The goal of the analysis
is to understand how the throughput is affected by
the scheduling policy and how different schedulers
perform under different workloads.

A. Experiment 1—Multi Process Throughput Mea-
surement

For multiprocess throughput evaluation we let
IOzone run 5 processes for the following bench-
mark tests:
Initial write, Rewrite, Mixed workload, Random
write, Read, Re-read, Stride read and Random read.
Table I shows the average throughput for each of
the five schedulers for different write and mixed
workload tests. Table II shows the average through-
put for each of the five schedulers for different
read tests. The throughputs reported are the overall
throughput for the respective schedulers with all
5 processes running. The average throughput per
process is substantially lower than the overall value.

The throughput mode test is particularly useful
for RWFIFO as it uses a mixed workload with
both reads and writes—which is not available for

single process throughput measurement in IOzone.
From Table I and II it can be seen that RWFIFO
has better performance for Reads as compared to
Writes and Mixed workload. This is however the
case for almost all the schedulers except Random,
whose performance degrades for Reads. RWFIFO
acts like no-op in the absence of a mixed workload
—if there are only reads then it schedules them
in a fifo fashion, similarly for only writes case.
Under a mixed workload RWFIFO’s performance is
slightly worse than CFQ’s performance. For Reads
RWFIFO’s performance is comparable to CFQ. The
performance of RWFIFO can be explained by the
fact that since these are all freshly written copies on
the disk. The data blocks are sequentially written
and so are the inodes. So, even with no ”clever”
scheduling, reads can be done quite quickly.

In the random write case (Table I), we see
things turning upside down. Because the schedulers
usually prioritize read over write, we get lower
numbers here for RWFIFO and CFQ. As AQL does
not prioritize Reads over writes its performance is
better than all the others. Random in this case per-
forms the worst. Amongst the various Read work-
loads, the worst performance for all the schedulers
is for Random Reads (except Random). The reason
for the performance decrease for the Random cases
is because the blocks to be read/written are not
sequential and most of the requests can’t be merged,

6



Fig. 2. Throughput measurements for Sequentially Re-Reading Various File sizes in Block sizes of 64k and 128k

Fig. 3. Throughput measurements for Randomly Reading Various File sizes in Block sizes of 64k and 128k

as a result the disk seek time and rotational time
increases as the right block is found on the disk
and hence the throughput for the disks decreases.
Similarly Stride Read the relative performance as
compared to sequential Read is lower—seek time
is greater.

From Table I and Table II we can still see that
the performance of AQL and CFQ is similar, in
fact for Re-write and Random Write AQL has a
better throughput than CFQ. The reason for this is
explained in Section VI.C.

For multiple processes the variation in the per-

formance of the Scheduler selector (Table I and
Table II) for the different workloads is similar
to the variations for the other schedulers —it is
higher for reads and lower for writes, higher for
sequential access, and lower for random and stride
access. The performance of the scheduler selector
should ideally be as high as the performance of the
best scheduler but it will be lower because of the
switching overhead to change the schedulers.

7



Fig. 4. Throughput measurements for writing to files of different sizes in Block sizes of 64k and 128k including writing file
metadata

Fig. 5. Throughput measurements for rewriting to existing file of different sizes in Block sizes of 64k and 128k

B. Experiment 2—Single Process Throughput
Measurement

We use IOzone in automatic mode, as described
in section V to provide throughput measurements
for a single process with varying workloads for
various file sizes, as described in section V.D using
each of the schedulers, AQL, CFQ, Random, RW-
FIFO and the scheduler selector. We use the follow-
ing file sizes 64kB, 128kB, 256kB, 512kB, 1024kB,
2048kB, 4096kB, 8192kB, 16384kB, 32768kB,
65536kB, 131072kB, 262144kB and 524288kB.
We use throughput measurements for record sizes

of 64kB and 128kB to glean insightful information
about I/O scheduler performance. We chose these
record sizes because IOzone automatic mode does
performance testing for all or nearly all file sizes for
those record sizes. We plot the throughput of each
scheduler as a function of the log of the file sizes
and record sizes and compare their performance.
Figures 1 to 6 show the plots. We would also like
to note that the data generated was from a single
benchmark test for each scheduler and does not
reflect the average case for these schedulers. There
is also large variations in measured throughput for
smaller file sizes because IOzone has no fixed time

8



Fig. 6. Throughput measurements for randomly writing to files of different sizes in Block sizes of 64k and 128k

testing.Therefore, our analysis for smaller file sizes
may not be relevant or valid.

We see that scheduler behavior does not vary
much across record sizes. More or less the same
behavior is exhibited by the schedulers for record
sizes of 64k and 128k. We also see that the trends
exhibited by the schedulers while doing random
reads are very similar to the trends exhibited by the
schedulers while doing sequential reads. We believe
this is due to the fact that all requests are put in the
dispatch queue in a sorted manner, so that through-
put is not affected by a large amount, though we
do see a significant difference in throughput when
the file size is small.

The initial writes (Figure 5) performance for
all the schedulers is worse compared to rewrites
because fresh writes end up writing metadata to
disk which is a slow operation. Therefore, it is
normal for the writing of a fresh file to have lower
throughput than a rewrite due to this overhead. [5]
Similarly, initial sequential reads of a file exhibit
lower throughput compared to sequential rereads
due to memory caching.

In both the random read and random write tests
there is no degradation in performance because the
file sizes used for testing are not large enough to
remove caching as a factor (L2 cache is quite large).
We suspect that scheduler performance will begin
to degrade once we exceed the cache size.

C. AQL vs CFQ

The results obtained show that CFQ and AQL
have similar performance. The reason for this be-
havior is that in our experiments processes had
identical I/O requirements. AQL in this instance,
behaves similar to CFQ because the I/O request
queue lengths per process will be approximately
equal (excluding the case where 2 or more pro-
cesses may share a queue). But, AQL was designed
with varying I/O needs of processes. Therefore,
AQL should provide n times I/O bandwidth to a
process which is keeping its queue n times longer
than another process.

Unfortunately IOzone does not allow for fixed
time length throughput testing. Therefore, for future
work, we would like to show that AQL differs when
processes have differing I/O needs. This would
require an experiment where two or more processes
are executing I/O operations for equivalent amounts
of time and barrier synchronization to ensure they
all are executing at the same time. Delay would
be introduced in between requests for some of
these processes as to simulate varying levels of I/O
demand from each process.

VII. CONCLUSION

The throughput of our schedulers is similar to the
performance of that of CFQ. AQL behaves similar
to CFQ, while RWFIFO’s performance is similar

9



to no-op and the Random scheduler does better
for certain workloads and for certain workloads
it performs worse. The scheduler selector did not
seem to yield any performance gains. The overall
throughput for a scheduler for multiple processes
doing IO is lower than the case of a single process.

VIII. CONTRIBUTIONS

Joe wrote the AQL and the random I/O sched-
ulers. He wrote the MATLAB scripts to generate
the Plots for the analysis section. He wrote Sec-
tion II.A, Section II.B and Section II.C, Section
III.A, Section VI.B, and Section VI.C. He also
ran benchmark tests for AQL and CFQ for the
automatic mode of IOzone and throughput mode
with 5 processes.

Sarah wrote the RWFIFO scheduler. She wrote
the abstract, Section I, Introduction of Section
II,Section III (other than III.A), Section V, Sec-
tion VI.A, Section VI.B and the Conclusion. She
generated the plots from the MATLAB script and
made tables I and II for section VI.A. She also ran
the benchmark tests for RWFIFO and Random for
automatic mode of IOzone and throughput mode
with 5 processes.

Asad wrote the scheduler selector and ran bench-
mark tests (same as above) for the scheduler selec-
tor. He wrote section IV and helped with section
VI.B.

REFERENCES

[1] http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/
index.jsp?topic=%2Fperformance%2Ftune
forsybase%2Fioschedulers.htm

[2] https://access.redhat.com/site/documentation/en-US/
RedHatEnterpriseLinux/6/html/
PerformanceTuningGuide/ch06s04s03.html

[3] http://www.linuxinsight.com/files/ols2004/pratt-
reprint.pdf

[4] https://access.redhat.com/site/documentation/en-US/
RedHatEnterpriseLinux/6/html/
PerformanceTuningGuide/ch06s04s02.html

[5] http://www.iozone.org/docs/IOzonemsword98.pdf
[6] Seelam, Seetharami, et al. ”Enhancements to Linux I/O

Scheduling.” Proc. of the Linux Symposium. Vol. 2. 2005.

10


