

A Computer Engineering Capstone Design Project:

A Harvard Architecture Assembly Simulator

Frank Di Natale, Joe Di Natale John Mercer, and Donald Ray
University of South Florida

For our capstone design project we participated in the 2010 IEEE Computer Society System Competition. The
purpose of the competition is, “to promote excellence in the design of a system by a team of students.” This
year’s problem was to design and develop a computer processor (CPU) simulator where originality of the
processor architecture, functionality, quality, versatility, and the use of good software engineering techniques are
key criteria. Our inspiration was the National Cyber Leap Year Summit of 2009 calling for a change in hardware
to increase security in computer transactions. One possible improvement is to be found in the Harvard
architecture. By separating the data memory from the instruction memory, buffer overflow attacks cannot be
used to inject and run code. In order to familiarize students with the Harvard architecture and its potential
tradeoffs, we designed and developed an assembly simulator and an associated instruction set architecture. Key
innovations included implementation of a Harvard architecture instruction set, compliance with Section 508 of
the Rehabilitation Act, and high-level debugging capabilities. By introducing the idea of secure computing to
students as they are learning the foundations of assembly programming, we can help guide the move to a more
secure Internet marketplace.

Corresponding Author: Frank Di Natale, fdinatal@mail.usf.edu

Introduction
The authors of this paper are all senior students in the

Department of Computer Science and Engineering at
the University of South Florida (USF). A requirement
for the BS in Computer Engineering degree is CIS 4910
Senior Project.1 The course takes students through the
standard design process, requiring that documentation
be submitted at each stage. This allows for experience in
a team environment to be acquired, as well as gives
valuable experience into how the design process works.1

The Senior Design course at USF uses the design
process shown in Figure 1. The goal of the course is to
allow students to become familiar with the development
process and complete a software or hardware project.
Each student selects an industry-based project, forming
a team of four to six with other students. The formal
development process is followed with requirements,
specification, and test plan documents being produced
along its progression. At the end of the semester
students will write a final report, make a poster, write a
press release, and give a final oral presentation about the
results of their project.

One of the key aspects of the course is industry
involvement.1 The course gives companies in central
Florida the opportunity to provide a non-critical project
to students to be completed over the course of a
semester, but also gives them a means of interacting
with the graduating class. One such interaction is

through guest lecturing. Speakers are asked to give a
lecture about their particular company, giving them the
opportunity to become familiar within the class as a
whole. Involvement by companies makes the experience
feel much more authentic by making the projects feel
important.

Figure 1: The Design Process

IEEE Computer Society Competition
In the Spring 2010 semester of Senior Design, there

was the opportunity to participate in the IEEE-CS
Competition. The competition has been run yearly since
the year 2000, seeking to give Computer Science and
Engineering students internationally a challenge similar

to those faced in the real world.2 The goal behind
providing such a problem is to promote teamwork,
centering around the idea that it’s not about individual
competition. The IEEE-CS Competition seeks to
accomplish that by providing a task which requires good
teamwork to win.2

The 2010 IEEE Computer Society System
Competition focuses on the use of sound software
engineering principles.3 This year’s competition goal is
to design an instruction set architecture and implement a
simulator for it. The project as a whole will be judged
by the following criteria:

• “The originality of the architecture designed
• Functionality, quality, and versatility of the

simulator.
• The use of software engineering in the design of

the simulator.”

For the winning team, a $7,000 prize is awarded for
the project that meets the listed criteria, as well as three
individual $1,000 prizes for groups who are the best in a
specific category.

Required contest deliverables included a report of no
more than 40 pages, the simulator itself, and a ten
minute video demonstration. In order to produce these
deliverables our group was broken down into assigned
roles, each person handling a specialty within the
project. The general flow of the team was led by ISA
development, followed by implementation within the
simulator, followed by additions to the report. We found
that this flow worked well because it allowed for tasks
to be pipelined quite efficiently.

This paper will highlight our team’s instruction set
architecture and simulator. It will also take a brief look
at related work, future work, and analyze our team’s
experience in our design class.

The Instruction Set Architecture
The first step in the design process was to design the

instruction set architecture (ISA). The South Florida
Instruction Set Architecture (SFI) is based the Harvard
Memory Architecture and RISC.

The Harvard Architecture allows for much needed
introduction to the concept of security. Harvard
architecture separates instruction and data memory
allowing for buffer overflow attacks to be deterred. By
introducing this concept of attacks at the architecture
level it becomes easier to introduce the concept of
security to students. Using RISC aligns well with the
statistical data presented in Patterson and Hennessy's
Computer Architecture: a Quantitative Approach, which
determined what instructions and addressing modes are
most common, and found that a minority of instructions
are used a majority of the time.4 Based on the

competition guidelines and our research, the following
requirements were drafted:

1. The data and instruction memory shall be separated

as seen in the Harvard Memory Architecture.
2. The instruction set shall use load-store architecture.
3. The instruction set shall support conditional and

unconditional branching.
a. Jump instruction.
b. Branch equal, unequal, and to Subroutine.

4. All signed values shall be represented in 2’s
complement form.

5. The instruction set shall support the following
arithmetic instructions:

a. Signed and unsigned addition, subtraction,
multiplication, division, and modulus
instructions.

b. Arithmetic right shifting operation.
6. The instruction set shall support the following

logical instructions:
a. AND, OR, NOT, and XOR instructions.
b. Left and right shift operations.

Instruction Classes

SFI has a total of 46 hardware level instructions
spanning over three instruction classes. Our ISA takes
two operands as inputs, using the first operand as both a
source and the destination, making these types suitable
to handle arithmetic instructions as well as some
variations of the load instruction. The Flow Control type
takes only one argument, a 16 bit immediate. This class
of instruction is used solely for forms of the jump,
branch, load, and store commands.

Figure 2: The three instruction classes

Registers

The SFI architecture contains 32 general purpose
registers (GPRs), each 32 bits in length. Each register is
addressed by using the name R# in the assembly code,
where # is a number from 0 to 31. Each GPR is also
split into a number of slices and can be seen in Figure 3
on the nest page. Instructions that contain operands that
are registers are accompanied by three bits which
represent the register slice mode. The slice break down
of a register is shown below. Register slices are
accessed by appending the name of the slice to the
register’s name (Ex. R1.W0 or R3.B2).

Figure 3: Layout of the register slices

Address Modes

Our architecture, SFI, supports five address modes:
immediate, relative, register-direct, register-indirect, and
register-indirect with offset. Each addressing mode can
be used for both instruction and data memory as each
instruction format provides. Instruction memory is
addressable by instruction (22 bit blocks) and data
memory is addressable by long word (32 bit blocks).

The immediate addressing mode allows for constants
to be passed in through the instruction to be operated
on. This mode allows for either a small constant to be
operated on or an address location to be passed within
the instruction.

The relative addressing
mode uses an offset to
address locations near the
PC. This ability makes flow
control much simpler.

Register-direct is the
addressing mode used to
directly address a register in
the register file of the
processor. There are 32
registers in the register file,
therefore the register-direct
mode uses 5 bits to address.

Register-indirect with
offset uses a register to store
a base memory address and
an 8 bit immediate offset or
another register to provide
offsets greater than 8 bits.
The offset is added to the
base address and then
accessed or written to. This
mode is also used to provide
register-indirect (without an offset), simply by keeping
the offset zero. When a register is addressed in the
assembly, it is automatically assumed that the offset is
zero if no offset is provided. Register-indirect
addressing is denoted by the “@” symbol with the
register and offset encapsulated in parentheses.

The Simulator
As SFI has no hardware developed for it, a simulator

is a requirement to test the instruction set and to provide
users with an introduction to its features. The SFI
Simulator implements the SFI Architecture, provides
debugging abilities, visual and audio alerts, configurable
syntax coloring, and an overview of the machine's state
during execution.

Our simulator was designed in two parts: the GUI
and the simulated processor. Because of the modular
nature of the design, our team decided that C# was the
best choice for implementation. Using the .NET
Framework, the simulator contains a fully functional
simulated SFI processor and functional GUI which
includes full compliance to United States Section 508
standards.5 Complying with the standard allows for the
SFI simulator to be more readily accessible to those
who are visually and hearing impaired.

 The user interface provides the basics that a
simulator needs to have in order to display the
machine's state. Like our architecture, the SFI Simulator
embraces the concept of simplicity and power. An
uncluttered interface allows easy access to the main
features of the simulator.

Figure 4: The SFI Simulator’s main window.

Figure 4 above displays our simulator’s layout and

the following features of our simulator:

1. Built in code editor with the ability to load and save
files.

2. Color coded keywords for instruction classes.

3. Tabbed register and data views with binary,
hexadecimal, signed 32-bit integer, and unsigned
32-bit integer representations.

4. Unconditional breakpoints (yellow highlighting).
5. Visual cue (“Beep!” bubble) for hearing impaired

users.

Along with the features listed above, for users who
are colorblind our simulator offers a high contrast color
scheme for the editing window so that the code is much
easier to read. These major additions make it so that
even users with impairments are able to comfortably
work with our simulator.

Also included with the SFI simulator are a variety of
debugging tools. The first of these features is active
syntax checking, allowing the user to fix any unnoticed
errors before they execute their program. Our simulator
also includes two forms of breakpoints: unconditional
and conditional. Unconditional breakpoints are used just
like those in a vast majority of other IDEs, simply by
marking the line to pause execution at. Conditional
breakpoints, on the other hand, are used to watch
registers. These breakpoints allow the user to designate
a breaking condition for specific registers based on the
stored data, making it possible to monitor data for
unpredicted values. Included with the breakpoints is the
ability to step as well, to see what is happening after
each and every instruction without having to resume full
execution.

Evaluation of the ISA and Simulator
In order to evaluate our architecture and simulator,

our group coded and ran a prime number program. The
program’s objective was to find all prime numbers
between 1 and 32. All coding was done within our
simulator’s IDE, and executed. The way the program
works is that it incrementally checks all factors up to the
number being assessed. If it is found that the number is
divisible by anything other than itself and 1 the number
being assessed is incremented. Both our instruction set
and simulator were able to handle full execution of the
prime number program. During the execution of the
program, our simulators debugging tools were used to
watch the registers as their data was modified. This
success shows that both the instruction set and simulator
are able to be used to code, execute, and debug.

Lessons Learned
Through the course of this project our team has

learned a few things.

1. In major projects teamwork is essential. If the team
cannot function, then the results will not be of good
quality.

2. International competitions do make good senior
design projects.

3. Contest entry and deadline dates should coincide
with college semesters allowing them to be used in
design classes.

Competitions provide students with a challenge that,

while not rooted in industry, is still a worthwhile project
for a student who perhaps would like to pursue further
studies or students interested in the theory behind the
scenes. It would be of great benefit if the separate
organizations (Capstone, IEEE, colleges, etc.) all
collaborated to produce a unified effort to bring these
challenges to students so that they can be affected by the
benefits that participating in such competitions can
provide.

Summary and Future Work
In summary, both the SFI and our simulator are fully

functional. The instruction set uses basic instructions,
but is quite powerful and our simulator has an array of
features including improved accessibility for those who
have disabilities, a built in editor, and debugging
capabilities. While both are functional, the following
things are features we would like to add:

1. More complex instructions in our ISA to support

more elegant code such as loops.
2. The ability to handle interrupts and message

passing to support peripherals and other features.
3. The ability to run a modified Harvard Architecture

without compromising security.
4. Optimize simulator code for better performance.
5. Use a different graphics library to support nicer

user interface features.

References
1. K. Christensen and D. Rundus. “The Capstone

Senior Design Course: An Initiative in Partnering
with Industry,” Proceedings of the 33rd
ASEE/IEEE Frontiers in Education Conference, pp.
S2B12-S2B17, November 2003.

2. A. Clements. “Constructing a Computing
Competition to Teach Teamwork,” Proceedings of
the 33rd ASEE/IEEE Frontiers in Education
Conference, pp. F1F1-F1F6, November 2003.

3. “IEEE Computer Society System Competition,”
http://www.computer.org/portal/web/competition

4. D. A. Patterson and J. L. Hennessy, Computer
Architecture: a Quantitative Approach, Morgan
Kaufmann Publishers Inc., 2003.

5. US Code, Title 29, section 794(d),
http://www.section508.gov/index.cfm?FuseAction=
Content&ID=12.

	A Computer Engineering Capstone Design Project:
	A Harvard Architecture Assembly Simulator
	Introduction
	IEEE Computer Society Competition
	The Instruction Set Architecture
	Instruction Classes
	Registers
	The SFI architecture contains 32 general purpose registers (GPRs), each 32 bits in length. Each register is addressed by using the name R# in the assembly code, where # is a number from 0 to 31. Each GPR is also split into a number of slices and can b...
	Address Modes
	The Simulator
	Evaluation of the ISA and Simulator
	Lessons Learned
	Summary and Future Work
	References

