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For our capstone design project we participated in the 2010 IEEE Computer Society System Competition. The 
purpose of the competition is, “to promote excellence in the design of a system by a team of students.” This 
year’s problem was to design and develop a computer processor (CPU) simulator where originality of the 
processor architecture, functionality, quality, versatility, and the use of good software engineering techniques are 
key criteria. Our inspiration was the National Cyber Leap Year Summit of 2009 calling for a change in hardware 
to increase security in computer transactions. One possible improvement is to be found in the Harvard 
architecture. By separating the data memory from the instruction memory, buffer overflow attacks cannot be 
used to inject and run code. In order to familiarize students with the Harvard architecture and its potential 
tradeoffs, we designed and developed an assembly simulator and an associated instruction set architecture. Key 
innovations included implementation of a Harvard architecture instruction set, compliance with Section 508 of 
the Rehabilitation Act, and high-level debugging capabilities. By introducing the idea of secure computing to 
students as they are learning the foundations of assembly programming, we can help guide the move to a more 
secure Internet marketplace.  
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Introduction 
The authors of this paper are all senior students in the 

Department of Computer Science and Engineering at 
the University of South Florida (USF). A requirement 
for the BS in Computer Engineering degree is CIS 4910 
Senior Project.1  The course takes students through the 
standard design process, requiring that documentation 
be submitted at each stage. This allows for experience in 
a team environment to be acquired, as well as gives 
valuable experience into how the design process works.1 

The Senior Design course at USF uses the design 
process shown in Figure 1. The goal of the course is to 
allow students to become familiar with the development 
process and complete a software or hardware project. 
Each student selects an industry-based project, forming 
a team of four to six with other students. The formal 
development process is followed with requirements, 
specification, and test plan documents being produced 
along its progression. At the end of the semester 
students will write a final report, make a poster, write a 
press release, and give a final oral presentation about the 
results of their project. 

One of the key aspects of the course is industry 
involvement.1 The course gives companies in central 
Florida the opportunity to provide a non-critical project 
to students to be completed over the course of a 
semester, but also gives them a means of interacting 
with the graduating class. One such interaction is 

through guest lecturing. Speakers are asked to give a 
lecture about their particular company, giving them the 
opportunity to become familiar within the class as a 
whole. Involvement by companies makes the experience 
feel much more authentic by making the projects feel 
important. 

 
Figure 1: The Design Process 

IEEE Computer Society Competition 
In the Spring 2010 semester of Senior Design, there 

was the opportunity to participate in the IEEE-CS 
Competition. The competition has been run yearly since 
the year 2000, seeking to give Computer Science and 
Engineering students internationally a challenge similar 



to those faced in the real world.2 The goal behind 
providing such a problem is to promote teamwork, 
centering around the idea that it’s not about individual 
competition. The IEEE-CS Competition seeks to 
accomplish that by providing a task which requires good 
teamwork to win.2 

The 2010 IEEE Computer Society System 
Competition focuses on the use of sound software 
engineering principles.3  This year’s competition goal is 
to design an instruction set architecture and implement a 
simulator for it.  The project as a whole will be judged 
by the following criteria: 

 
• “The originality of the architecture designed 
• Functionality, quality, and versatility of the 

simulator. 
• The use of software engineering in the design of 

the simulator.” 
 

For the winning team, a $7,000 prize is awarded for 
the project that meets the listed criteria, as well as three 
individual $1,000 prizes for groups who are the best in a 
specific category. 

Required contest deliverables included a report of no 
more than 40 pages, the simulator itself, and a ten 
minute video demonstration. In order to produce these 
deliverables our group was broken down into assigned 
roles, each person handling a specialty within the 
project. The general flow of the team was led by ISA 
development, followed by implementation within the 
simulator, followed by additions to the report. We found 
that this flow worked well because it allowed for tasks 
to be pipelined quite efficiently. 

This paper will highlight our team’s instruction set 
architecture and simulator. It will also take a brief look 
at related work, future work, and analyze our team’s 
experience in our design class. 

The Instruction Set Architecture 
The first step in the design process was to design the 

instruction set architecture (ISA). The South Florida 
Instruction Set Architecture (SFI) is based the Harvard 
Memory Architecture and RISC.  

The Harvard Architecture allows for much needed 
introduction to the concept of security. Harvard 
architecture separates instruction and data memory 
allowing for buffer overflow attacks to be deterred.  By 
introducing this concept of attacks at the architecture 
level it becomes easier to introduce the concept of 
security to students.  Using RISC aligns well with the 
statistical data presented in Patterson and Hennessy's 
Computer Architecture: a Quantitative Approach, which 
determined what instructions and addressing modes are 
most common, and found that a minority of instructions 
are used a majority of the time.4 Based on the 

competition guidelines and our research, the following 
requirements were drafted: 

 
1. The data and instruction memory shall be separated 

as seen in the Harvard Memory Architecture. 
2. The instruction set shall use load-store architecture. 
3. The instruction set shall support conditional and 

unconditional branching. 
a. Jump instruction. 
b. Branch equal, unequal, and to Subroutine. 

4. All signed values shall be represented in 2’s 
complement form. 

5. The instruction set shall support the following 
arithmetic instructions: 

a. Signed and unsigned addition, subtraction, 
multiplication, division, and modulus 
instructions. 

b. Arithmetic right shifting operation. 
6. The instruction set shall support the following 

logical instructions: 
a. AND, OR, NOT, and XOR instructions. 
b. Left and right shift operations. 

Instruction Classes 

SFI has a total of 46 hardware level instructions 
spanning over three instruction classes. Our ISA takes 
two operands as inputs, using the first operand as both a 
source and the destination, making these types suitable 
to handle arithmetic instructions as well as some 
variations of the load instruction. The Flow Control type 
takes only one argument, a 16 bit immediate. This class 
of instruction is used solely for forms of the jump, 
branch, load, and store commands.  

 

 
Figure 2: The three instruction classes 

Registers 

The SFI architecture contains 32 general purpose 
registers (GPRs), each 32 bits in length. Each register is 
addressed by using the name R# in the assembly code, 
where # is a number from 0 to 31. Each GPR is also 
split into a number of slices and can be seen in Figure 3 
on the nest page. Instructions that contain operands that 
are registers are accompanied by three bits which 
represent the register slice mode. The slice break down 
of a register is shown below. Register slices are 
accessed by appending the name of the slice to the 
register’s name (Ex. R1.W0 or R3.B2). 

 



 
Figure 3: Layout of the register slices 

Address Modes 

Our architecture, SFI, supports five address modes: 
immediate, relative, register-direct, register-indirect, and 
register-indirect with offset. Each addressing mode can 
be used for both instruction and data memory as each 
instruction format provides. Instruction memory is 
addressable by instruction (22 bit blocks) and data 
memory is addressable by long word (32 bit blocks). 

The immediate addressing mode allows for constants 
to be passed in through the instruction to be operated 
on. This mode allows for either a small constant to be 
operated on or an address location to be passed within 
the instruction. 

The relative addressing 
mode uses an offset to 
address locations near the 
PC. This ability makes flow 
control much simpler. 

Register-direct is the 
addressing mode used to 
directly address a register in 
the register file of the 
processor. There are 32 
registers in the register file, 
therefore the register-direct 
mode uses 5 bits to address.  

Register-indirect with 
offset uses a register to store 
a base memory address and 
an 8 bit immediate offset or 
another register to provide 
offsets greater than 8 bits. 
The offset is added to the 
base address and then 
accessed or written to. This 
mode is also used to provide 
register-indirect (without an offset), simply by keeping 
the offset zero. When a register is addressed in the 
assembly, it is automatically assumed that the offset is 
zero if no offset is provided. Register-indirect 
addressing is denoted by the “@” symbol with the 
register and offset encapsulated in parentheses. 

The Simulator 
As SFI has no hardware developed for it, a simulator 

is a requirement to test the instruction set and to provide 
users with an introduction to its features. The SFI 
Simulator implements the SFI Architecture, provides 
debugging abilities, visual and audio alerts, configurable 
syntax coloring, and an overview of the machine's state 
during execution. 

Our simulator was designed in two parts: the GUI 
and the simulated processor. Because of the modular 
nature of the design, our team decided that C# was the 
best choice for implementation. Using the .NET 
Framework, the simulator contains a fully functional 
simulated SFI processor and functional GUI which 
includes full compliance to United States Section 508 
standards.5 Complying with the standard allows for the 
SFI simulator to be more readily accessible to those 
who are visually and hearing impaired. 

 The user interface provides the basics that a 
simulator needs to have in order to display the 
machine's state. Like our architecture, the SFI Simulator 
embraces the concept of simplicity and power. An 
uncluttered interface allows easy access to the main 
features of the simulator. 

Figure 4: The SFI Simulator’s main window. 
 
Figure 4 above displays our simulator’s layout and 

the following features of our simulator: 
 

1. Built in code editor with the ability to load and save 
files. 

2. Color coded keywords for instruction classes. 



3. Tabbed register and data views with binary, 
hexadecimal, signed 32-bit integer, and unsigned 
32-bit integer representations. 

4. Unconditional breakpoints (yellow highlighting). 
5. Visual cue (“Beep!” bubble) for hearing impaired 

users. 
 

Along with the features listed above, for users who 
are colorblind our simulator offers a high contrast color 
scheme for the editing window so that the code is much 
easier to read. These major additions make it so that 
even users with impairments are able to comfortably 
work with our simulator. 

Also included with the SFI simulator are a variety of 
debugging tools. The first of these features is active 
syntax checking, allowing the user to fix any unnoticed 
errors before they execute their program. Our simulator 
also includes two forms of breakpoints: unconditional 
and conditional. Unconditional breakpoints are used just 
like those in a vast majority of other IDEs, simply by 
marking the line to pause execution at. Conditional 
breakpoints, on the other hand, are used to watch 
registers. These breakpoints allow the user to designate 
a breaking condition for specific registers based on the 
stored data, making it possible to monitor data for 
unpredicted values. Included with the breakpoints is the 
ability to step as well, to see what is happening after 
each and every instruction without having to resume full 
execution. 

Evaluation of the ISA and Simulator 
In order to evaluate our architecture and simulator, 

our group coded and ran a prime number program. The 
program’s objective was to find all prime numbers 
between 1 and 32. All coding was done within our 
simulator’s IDE, and executed. The way the program 
works is that it incrementally checks all factors up to the 
number being assessed. If it is found that the number is 
divisible by anything other than itself and 1 the number 
being assessed is incremented. Both our instruction set 
and simulator were able to handle full execution of the 
prime number program. During the execution of the 
program, our simulators debugging tools were used to 
watch the registers as their data was modified. This 
success shows that both the instruction set and simulator 
are able to be used to code, execute, and debug. 

Lessons Learned 
Through the course of this project our team has 

learned a few things.  
 

1. In major projects teamwork is essential. If the team 
cannot function, then the results will not be of good 
quality. 

2. International competitions do make good senior 
design projects. 

3. Contest entry and deadline dates should coincide 
with college semesters allowing them to be used in 
design classes. 

 
Competitions provide students with a challenge that, 

while not rooted in industry, is still a worthwhile project 
for a student who perhaps would like to pursue further 
studies or students interested in the theory behind the 
scenes. It would be of great benefit if the separate 
organizations (Capstone, IEEE, colleges, etc.) all 
collaborated to produce a unified effort to bring these 
challenges to students so that they can be affected by the 
benefits that participating in such competitions can 
provide. 

Summary and Future Work 
In summary, both the SFI and our simulator are fully 

functional. The instruction set uses basic instructions, 
but is quite powerful and our simulator has an array of 
features including improved accessibility for those who 
have disabilities, a built in editor, and debugging 
capabilities. While both are functional, the following 
things are features we would like to add:  

 
1. More complex instructions in our ISA to support 

more elegant code such as loops. 
2. The ability to handle interrupts and message 

passing to support peripherals and other features. 
3. The ability to run a modified Harvard Architecture 

without compromising security. 
4. Optimize simulator code for better performance. 
5. Use a different graphics library to support nicer 

user interface features. 
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